TRADUCTOR

miércoles, 23 de octubre de 2013

SOYUZ

Soyuz (Russian: Сою́зIPA: [sɐˈjus]), Union) is a series of spacecraft initially designed for the Soviet space programme by the Korolyov Design Bureau in the 1960s, and still in service today. The Soyuz succeeded the Voskhod spacecraft and was originally built as part of the Soviet Manned Lunar programme.
The Soyuz spacecraft is launched by the Soyuz rocket, the most frequently used and most reliable Russian launch vehicle to date. The Soyuz rocket design is based on the Vostok launcher, which in turn was based on the 8K74 or R-7A Semyorka, a Soviet intercontinental ballistic missile. Soyuz spacecraft are launched from the Baikonur Cosmodrome in Kazakhstan.
The first unmanned Soyuz mission was launched November 28, 1966; the first Soyuz mission with a crew (Soyuz 1) was launched April 23, 1967, but the cosmonaut on board,Vladimir Komarov, died during the flight's crash-landing. Soyuz 2 was an unmanned mission, and Soyuz 3, launched on October 26, 1968, was the first successful Soyuz manned mission. The only other fatal mission, Soyuz 11, killed the crew of three also during re-entry due to premature cabin depressurization. Despite these early fatalities, Soyuz is presently widely considered the world's safest, most cost-effective human spaceflight system, as demonstrated by its unparalleled length of operational history.
Soyuz spacecraft were used to carry cosmonauts to and from Salyut and later Mir Soviet space stations, and are now used for transport to and from the International Space Station(ISS). At least one Soyuz spacecraft is docked to ISS at all times for use as an escape craft in the event of an emergency.
The Soyuz spacecraft is intended to be replaced by the six-person Prospective Piloted Transport System.

DESIGN
A Soyuz spacecraft consists of three parts (from front to back):
  • A spheroid orbital module, which provides accommodation for the crew during their mission;
  • A small aerodynamic reentry module, which returns the crew to Earth;
  • A cylindrical service module with solar panels attached, which contains the instruments and engines

Orbital Module

The forepart of the spacecraft is the orbital module (Russian: бытовой отсек (БО); Bytovoi otsek (BO)), also known as Habitation section. It houses all the equipment that will not be needed for reentry, such as experiments, cameras or cargo. The module also contains a toilet, docking avionics and communications gear. Internal volume is 6 m³, living space 5 m³. On the latest Soyuz versions (since Soyuz TM), a small window was introduced, providing the crew with a forward view.

Reentry Module

The reentry module (Russian: спускаемый аппарат (СА); Spuskaemyi apparat (SA)) is used for launch and the journey back to Earth. Half of the reentry module is covered by a heat-resistant covering to protect it during re-entry; this half faces the Earth during re-entry. It is slowed initially by the atmosphere, then by a braking parachute, followed by the main parachute which slows the craft for landing. At one meter above the ground, solid-fuel braking engines mounted behind the heat shield are fired to give a soft landing. One of the design requirements for the reentry module was for it to have the highest possible volumetric efficiency (internal volume divided by hull area).


Service Module

At the back of the vehicle is the service module (Russian: приборно-агрегатный отсек (ПАО); Priborno-Agregatnyi Otsek (PAO)). It has a pressurized container shaped like a bulging can (Instrumentation compartment, PO (Priborniy Otsek)) that contains systems for temperature control, electric power supply, long-range radio communications, radio telemetry, and instruments for orientation and control. A non-pressurized part of the service module (Propulsion compartment, AO (Agregatniy Otsek)) contains the main engine and a liquid-fuelled propulsion system for maneuvering in orbit and initiating the descent back to Earth. The ship also has a system of low-thrust engines for orientation, attached to the Intermediate compartment (PkhO or Perekhodnoi Otsek).

Re-entry procedure

The Soyuz uses a method similar to the Apollo Command/Service modules to de-orbit itself. The spacecraft is turned engine-forward and the main engine is fired for de-orbiting fully 180° ahead of its planned landing site. This requires the least propellant for re-entry, the spacecraft traveling on an elliptical Hohmann orbit to a point where it will be low enough in the atmosphere to re-enter.


zondle - games to support learning

lunes, 21 de octubre de 2013

Buran (spacecraft)

The Buran spacecraft (Russian: Бура́нIPA: [bʊˈran]Snowstorm or Blizzard), GRAU index 11F35 K1 was a Soviet orbital vehicle analogous in function and design to the US Space Shuttle and developed by Chief Designer Gleb Lozino-Lozinskiy of RKK Energia. Buran completed one unmanned spaceflight in 1988 and remains the only Soviet space shuttle that was launched into space, as the Buran programme was cancelled in 1993. It was treated as a Soviet space shuttle but only the plane itself was theoretically reusable (and in fact, it was never reused). The main part of the system was just an expendable powerful rocket - Energia.
A Buran spacecraft was destroyed in 2002 at the Baikonur Cosmodrome, when the hangar in which it was stored collapsed.


OVERVIEW
The Buran orbital vehicle program was developed in response to the U.S. Space Shuttle program, which in the 1980s raised considerable concerns among the Soviet military and especially Defense Minister Dmitriy Ustinov. An authoritative biographer of the Russian space program, academic Boris Chertok, recounts how the program came into being. According to Chertok, after the U.S. developed its Space Shuttle program, the Soviet military became suspicious that it could be used for military purposes, due to its enormous payload, several times that of previous U.S. spaceships. The Soviet government asked the Officially, the Buran spacecraft was designed for the delivery to orbit and return to Earth of spacecraft, cosmonauts, and supplies. Both Chertok and Gleb Lozino-Lozinskiy suggest that from the beginning, the program was military in nature; however, the exact military capabilities, or intended capabilities, of the Buran program remain classified.



 Commenting on the discontinuation of the program in his interview to New Scientist, Russian cosmonaut Oleg Kotov confirms their accounts: (ЦНИИМАШ, Central Institute of Machine-building, a major player in defense analysis) for an expert opinion. Institute director, Yuri Mozzhorin, recalls that for a long time the institute could not envisage a civilian payload large enough to require a vehicle of that capacity. Based on this, as well as on US profitability analyses of that time, which showed that the Space Shuttle would be economically efficient only with a large number of launches (one every week or so), Mozzhorin concluded that the vehicle had a military purpose, although he was unable to say exactly what. The Soviet program was further boosted after Defense Minister Ustinov received a report from analysts showing that, at least in theory, the Space Shuttle could be used to deploy nuclear bombs over Soviet territory. Chertok recounts that Ustinov was so worried by the possibility that he made the Soviet response program a top priority.


Officially, the Buran spacecraft was designed for the delivery to orbit and return to Earth of spacecraft, cosmonauts, and supplies. Both Chertok and Gleb Lozino-Lozinskiy suggest that from the beginning, the program was military in nature; however, the exact military capabilities, or intended capabilities, of the Buran program remain classified. Commenting on the discontinuation of the program in his interview to New Scientist, Russian cosmonaut Oleg Kotov confirms their accounts:


"We had no civilian tasks for Buran and the military ones were no longer needed. It was originally designed as a military system for weapon delivery, maybe even nuclear weapons. The American shuttle also has military uses."



Like its American counterpart, the Buran, when in transit from its landing sites back to the launch complex, was transported on the back of a large jet aeroplane — the Antonov An-225 Mriya transport aircraft, which was designed in part for this task and remains the largest aircraft in the world to fly multiple times.





zondle - games to support learning

viernes, 18 de octubre de 2013

Mir

Mir was a space station that operated in low Earth orbit from 1986 to 2001, owned at first by the Soviet Union and then by RussiaMir was the first modular space station and was assembled in orbit from 1986 to 1996. It had a greater mass than that of any previous spacecraft. It held the record for the largest artificial satellite orbiting the Earth until that record was surpassed by the International Space Station after Mir's deorbit on 21 March 2001. Mir served as a microgravity researchlaboratory in which crews conducted experiments in biologyhuman biologyphysics,astronomymeteorology and spacecraft systems in order to develop technologies required for the permanent occupation of space.
The station was the first consistently inhabited long-term research station in space and was operated by a series of long-duration crews. The Mir programme held the record for the longest uninterrupted human presence in space, at 3,644 days, until 23 October 2010 (when it was surpassed by the ISS), and it currently holds the record for the longest single human spaceflight, of Valeri Polyakov, at 437 days 18 hours. Mir was occupied for a total of twelve and a half years of its fifteen-year lifespan, having the capacity to support a resident crew of three, and larger crews for short-term visits.

Following the success of the Salyut programmeMir represented the next stage in the Soviet Union's space station programme. The first module of the station, known as the core module or base block, was launched in 1986, and was followed by six further modules, all launched by Proton rockets (with the exception of the docking module). When complete, the station consisted of seven pressurised modules and several unpressurised components. Power was provided by several photovoltaic arrays mounted directly on the modules. The station was maintained at an orbit between 296 km (184 mi) and 421 km (262 mi) altitude and traveled at an average speed of 27,700 km/h (17,200 mph), completing 15.7 orbits per day.
The station was launched as part of the Soviet Union's manned spaceflight programmeeffort to maintain a long-term research outpost in space, and, following the collapse of the USSR, was operated by the new Russian Federal Space Agency (RKA). As a result, the vast majority of the station's crew were Soviet or Russian; however, through international collaborations, including the IntercosmosEuromir and Shuttle-Mir programmes, the station was made accessible to astronauts from North America, several European nations and Japan. The cost of the Mir programme was estimated by former RKA General DirectorYuri Koptev in 2001 as $4.2 billion over its lifetime (including development, assembly and orbital operation). The station was serviced by Soyuz spacecraft, Progress spacecraft and U.S. Space Shuttles, and was visited by astronauts and cosmonauts from 12 different nations.


zondle - games to support learning

martes, 15 de octubre de 2013

SKYLAB

Skylab was a space station launched and operated by NASA and was the United States' first space station. Skylab orbited the Earth from 1973 to 1979, and included a workshop, a solar observatory, and other systems. It was launched unmanned by a modified Saturn V rocket, with a mass of 169,950 pounds (77 t). Three manned missions to the station, conducted between 1973 and 1974 using the Apollo Command/Service Module (CSM) atop the smaller Saturn IB, each delivered a three-astronaut crew. On the last two manned missions, an additional Apollo / Saturn IB stood by ready to rescue the crew in orbit if it was needed.

Skylab included the Apollo Telescope Mount, which was a multi-spectral solar observatory, Multiple Docking Adapter (with two docking ports), Airlock Module with EVA hatches, and the Orbital Workshop, the main habitable volume. Electrical power came from solar arrays, as well as fuel cells in the docked Apollo CSM. The rear of the station included a large waste tank, propellant tanks for maneuvering jets, and a heat radiator.

The station was damaged during launch when the micrometeoroid shield separated from the workshop and tore away, taking one of two main solar panel arrays with it and jamming the other one so that it could not deploy. This deprived Skylab of most of its electrical power, and also removed protection from intense solar heating, threatening to make it unusable. The first crew was able to save it in the first ever in-space major repair, by deploying a replacement heat shade and freeing the jammed solar panels.


Numerous scientific experiments were conducted aboard Skylab during its operational life, and crews were able to confirm the existence of coronal holes in the Sun. The Earth Resources Experiment Package (EREP) was used to view the Earth with sensors that recorded data in the visible, infrared, and microwave spectral regions. Thousands of photographs of Earth were taken, and records for human time spent in orbit were extended.
Plans were made to refurbish and reuse Skylab, using the Space Shuttle to boost its orbit and repair it. However, development of the Shuttle was delayed, and Skylab reentered Earth's atmosphere and disintegrated in 1979, with debris striking portions of Western Australia.
Post-Skylab NASA space laboratory projects included SpacelabShuttle-Mir, and Space Station Freedom. The last was merged into the plans for the International Space Station(ISS) in 1993. The construction of the ISS started in 1998, in partnership with Russia, theEuropean Space Agency (ESA), Japan and Canada.


zondle - games to support learning

viernes, 11 de octubre de 2013

ISS

THE INTERNATIONAL STATION

The International Space Station (ISS) is a space station, or a habitable artificial satellite in low Earth orbit. The ninth space station to be inhabited by crews, it follows the Soviet and later Russian SalyutAlmaz, and Mir stations, and America's Skylab. The ISS is a modular structure whose first component was launched in 1998. Now the largest artificial body in orbit, it can often be seen at the appropriate time with the naked eye from Earth. The ISS consists of pressurised modules, external trusses, solar arrays and other components. ISS components have been launched by American Space Shuttles as well as Russian Proton and Soyuz rockets. Budget constraints led to the merger of three space station projects with the Japanese Kibō module and Canadian robotics. In 1993 the partially built components for a Soviet/Russian space station Mir-2, the proposed American Freedom, and the proposed European Columbus merged into a single multinational programme. The ISS is arguably the most expensive single item ever constructed.


The ISS serves as a microgravity and space environment research laboratory in which crew members conduct experiments in biologyhuman biologyphysics,astronomymeteorology and other fields. The station is suited for the testing of spacecraft systems and equipment required for missions to the Moon and Mars.
Since the arrival of Expedition 1 on 2 November 2000, the station has been continuously occupied for 12 years and 341 days, currently the longest continuous human presence in space. (In 2010, the station surpassed the previous record of almost 10 years (or 3,634 days) held by Mir.) The station is serviced by Soyuz spacecraft, Progress spacecraft, the Automated Transfer Vehicle, the H-II Transfer Vehicle, and the Dragon spacecraft. It has been visited by astronauts and cosmonauts from 15 different nations.

The ISS programme is a joint project among five participating space agencies:NASARoskosmosJAXAESA, and CSA. The ownership and use of the space station is established by intergovernmental treaties and agreements. The station is divided into two sections, the Russian orbital segment (ROS) and the United States orbital segment (USOS), which is shared by many nations. The ISS maintains an orbit with an altitude of between 330 km (205 mi) and 435 km (270 mi) by means of reboost manoeuvres using the engines of the Zvezda module or visiting spacecraft. It completes 15.49 orbits per day. The ISS is funded until 2020, and may operate until 2028. The Russian Federal Space Agency, Roskosmos (RKA) has proposed using the ISS to commission modules for a new space station, called OPSEK, before the remainder of the ISS is deorbited.




zondle - games to support learning